Tag Archive for: GEO

MediaTek, a Taiwanese chipmaker and Inmarsat, a British satellite operator have announced an extended partnership aimed at jointly developing technologies that will enable more mass-market devices to connect directly to Inmarsat’s satellite network. This expanded collaboration will not only focus on joint technology innovation but also encompass the commercial deployment of satellite-enabled devices, potentially spanning smartphones, Internet of Things (IoT) devices, and even vehicles.

The services to be offered through this partnership could include two-way text messaging, emergency communications, and device tracking and monitoring for regions where terrestrial network coverage is limited or unavailable. However, there is currently no specific deadline for when these satellite-enabled devices will be commercially deployed as a result of this partnership.

In the case of smartphones, for instance, the approach will involve working closely with Mobile Network Operators (MNOs) and Original Equipment Manufacturers (OEMs) to integrate satellite connectivity into their offerings. This ensures that the integration aligns with the strategies and preferences of MNOs and OEMs, allowing them to provide enhanced services to their customers.

This collaboration builds upon a three-year partnership that had already yielded significant results. In February, the partnership led to the release of Android smartphones by ruggedized handset manufacturer Bullitt, which provided satellite-enabled text messaging services via service provider Skylo. With this expansion, Inmarsat and MediaTek aim to further innovate and expand the reach of satellite connectivity across various consumer and industrial applications.

The partnership between Inmarsat and MediaTek comes on the heels of other satellite operators venturing into the realm of enabling mass-market devices to connect directly to their networks. Iridium, for instance, announced Qualcomm as its partner to facilitate the connection of Android smartphones and other devices to its satellite constellation.

Furthermore, Apple introduced a satellite-enabled SOS service for the iPhone 14, using Globalstar’s network. It’s important to note that while Iridium and Globalstar operate in low Earth orbit (LEO), Inmarsat’s satellites are situated in geostationary orbit (GEO). This key distinction means that Inmarsat can provide two-way communications without the need for complex aiming of the device. However, it’s worth mentioning that Iridium and Globalstar enjoy an advantage in terms of latency since LEO satellites are much closer to Earth than GEO satellites.

OneWeb, the British operator of a low Earth orbit (LEO) broadband network, has launched a free trial offer for maritime customers. The company recently expanded its network coverage to include a larger portion of the northern hemisphere, now reaching down to 35 degrees latitude. This expansion enables coverage across Europe and the upper United States. OneWeb’s network has 634 satellites in LEO, and it is currently in the process of finalizing the necessary ground stations for global coverage, which is expected to be completed by the end of this year.

The “try before you buy” deal for maritime customers lasts for 45 days and is facilitated through OneWeb’s network of distribution partners. The financial costs for OneWeb’s enterprise-grade maritime services, which promise speeds of at least 100 megabits per second (Mbps), have not been disclosed.

In comparison, SpaceX’s Starlink LEO constellation, another provider of global connectivity, offers maritime services starting at $250 per month. Starlink advertises download speeds of up to 220 Mbps and requires a one-time hardware fee of $2,500, which includes an antenna built in-house.

Kymeta, based in the United States, and Intellian, based in South Korea, are the providers of antennas for OneWeb’s maritime services. These antennas will enable connectivity for maritime customers using OneWeb’s low Earth orbit (LEO) broadband network.

In addition to the maritime service announcement, OneWeb also revealed its plans to expand its distribution partnership with Hughes Network Systems. Hughes, an investor in OneWeb through its parent company EchoStar, will provide global inflight connectivity (IFC) services to airlines once OneWeb’s LEO services are available next year. Hughes has developed an electronically steered antenna specifically designed for the partnership, allowing aircraft to connect to both LEO and geostationary orbit (GEO) satellites.

Depending on the specific requirements of airlines, the partnership aims to offer a choice between a LEO-only solution or a hybrid service that combines both LEO and GEO connectivity.

OneWeb’s range of services extends beyond maritime and inflight connectivity. They also offer fixed and mobile land-based connectivity services for enterprises and governments.

Hughes, in addition to its involvement in providing inflight connectivity, has played a significant role in engineering OneWeb’s gateways. As a distribution partner, Hughes is responsible for distributing OneWeb’s fixed satellite services in the United States and India. Furthermore, Hughes distributes OneWeb’s connectivity solutions to the U.S. Department of Defense, catering to their specific communication needs.

Viasat is seeking to create hybrid narrowband direct-to-smartphone services using satellites in geostationary and non-geostationary orbits according to its CEO, Mark Dankberg, who spoke at the SmallSat Symposium in California on Feb. 8.

Viasat is open to partnering with low Earth orbit companies, including rival SpaceX. The acquisition of Inmarsat is still awaiting regulatory approval, and Viasat is focusing on improving payload integration to save space by looking at standardized cubesat-type form factors to allow new entrants into these systems.

Advances in technology are making it easier to communicate from orbit without large antennas or specialized phones, and direct-to-smartphone capabilities are becoming increasingly compelling. However, Viasat is aware of the potential negative impact of having any cell phone or smartwatch in the world connect directly to a space system, which is not consistent with the self-interest of many nations.

As direct-to-smartphone efforts pick up, it is likely to have knock-on effects across the rest of the space industry, including putting more mass into orbit, increasing the threat of collisions that could threaten the viability of space operations for all operators.

Dankberg told the SmallSat Symposium that while Viasat made its multi-billion dollar offer for Inmarsat because of its international broadband presence, its direct-to-smartphone narrowband capabilities are increasingly compelling.

He said “one of the biggest potential markets is direct-to-device,” which is “going to have a big influence, both positive and negative when it comes to … the self-interest of nations.”

Advances in technology and telecom protocol standardization are making it easier to communicate to and from orbit without large antennas or specialized phones. 

“It’s possible to control that,” Dankberg said, “but when any cell phone in the world, or smartwatch … within your borders can connect to a space system directly, that is not consistent with the self-interest of quite a few nations in the world.”

Small LEO satellites have been getting larger to improve their capabilities as launch economics improve, Dankberg noted.

He pointed to how SpaceX’s Starlink broadband satellites have increased from about 250 kilograms to the 2,000-kilogram range to add new capabilities, such as direct-to-smartphone services, into its second-generation broadband constellation.

Viasat believes “you do not need very large satellites to accomplish missions in space,” Dankberg said, and is focusing on improving payload integration to save space.

“We’re looking at standardized cubesat-type form factors that we think we can buy that will create a vibrant ecosystem,” he added, “to allow many new entrants into these into these systems.”

Viasat is still waiting on regulatory approvals from the United Kingdom and European to buy Inmarsat after announcing the deal in November 2021.

The statuary deadline for the U.K.’s competition watchdog to decide on the deal is March 30, Raymond James analyst Ric Prentiss said in a recent investor note, and “then the last remaining hurdle would be the European Commission which could potentially elongate the timeline.”

Viasat, which recently completed the $2 billion sale of its tactical data communications business, reported $651 million in revenue from continuing operations in the three months to the end of December, up 4% year-on-year.

Adjusted EBITDA, or earnings before interest, taxes, depreciation and amortization, declined 15% to $139 million. 

The operator also disclosed an extra few weeks of delays for its debut next-generation ViaSat-3 satellite, designed to add significant amounts of capacity over the Americas, which is now slated for a SpaceX Falcon Heavy launch in the week of April 8.

The second ViaSat-3, covering Europe, Middle East, and Africa, is counting down to a September launch on one of United Launch Alliance’s last Atlas launches.

The Space Force is expected to shift investments from large satellites like the Space Based Infrared System, which the Air Force acquired around 20 years ago to smaller spacecraft.

According to the the head of military space acquisitions, the era of massive satellites needs to be a thing of the past for the Department of Defense and he told the government and industry executives about this a week ago.

Frank Calvelli, assistant secretary of the Air Force for space acquisition and integration, since taking office has been insistent that reforms are needed in satellite procurements, including the transition to smaller satellites that can be built and launched within a three-year period, compared to a decade or longer for traditional large satellites. 

Calvelli spoke at the National Security Space Association’s defense and intelligence conference in a fireside chat with former DoD official Doug Loverro.

Echoing points he made in previous public appearances, Calvelli called for DoD to break from the past and embrace more agile ways to buy satellites in order to make United States of America systems more resilient to threats. Most space-based systems the U.S. military needs — for communications, space domain awareness, missile detection and tracking, navigation, weather and other applications — can be accomplished using small satellites, Calvelli said. 

“We are transforming from what’s been called ‘big juicy targets’ of the past to a more proliferated and more resilient architecture that can be counted on during times of crisis and conflict,” he said. 

Using commercially available satellite buses and components, DoD can build smaller spacecraft for operations in low, medium or geostationary Earth orbits, Calvelli said. “I see us building small satellites everywhere, regardless of whether it’s LEO MEO or GEO.”

Calvelli made the case that the traditional “big structures with lots of payloads on them” can be broken down into smaller satellites which would be harder for an enemy to target. That concept, also known as “disaggregation,” was advocated by some Air Force officials a decade ago but was largely rejected in favor of big satellites that, although expensive, can operate in orbit for decades. 

In light of recent advances in anti-satellite weapons developed by China and Russia, the Pentagon has to pivot to more resilient systems, Calvelli stressed. “I do believe that we can break apart the big behemoths in GEO and break them into smaller bite-sized chunks which is going to diversify the architecture and protect us more.”

‘Do not design new buses’

Since taking office seven months ago, Calvelli has noticed that Space Force program offices tend to design bespoke satellite buses, another practice that he wants to end. 

“If you need some new tech, that’s okay. But keep that development focused on the payload. Do not create new buses,” he said. 

There are plenty of commercially available buses to choose from, he said. “We love building new buses. We love building new bus components. We love doing new things that are already out there,” he said. “If you need to do some tech development, keep it minimal.”