Tag Archive for: LEO

“Direct-to-device” communication in the context of satellite technology is a significant and evolving topic with a potentially substantial market impact. This communication approach involves sending data, content, or services directly to user devices, such as smartphones, without the need for intermediary ground-based infrastructure or additional user equipment. Here are some key points to consider regarding direct-to-device satellite communication:

  1. Market Potential: The direct-to-device satellite communication market holds immense potential, with estimates of its value reaching up to $100 billion. This potential is driven by various factors, including the growing demand for connectivity in remote or underserved areas, disaster response and recovery efforts, IoT applications, and more.
  2. Low Earth Orbit (LEO) Satellites: The rise of LEO satellite constellations, such as SpaceX and OneWeb, is a driving force behind the concept of direct-to-device communication. LEO satellites operate at lower altitudes, reducing latency and enabling direct communication with user devices.
  3. Reduced Latency: Direct-to-device communication via LEO satellites can significantly reduce latency compared to traditional geostationary satellites. This low-latency connectivity is essential for applications like online gaming, video conferencing, and real-time IoT data transmission.
  4. Global Coverage: Direct-to-device satellite networks aim to provide global coverage, extending connectivity to remote and rural areas that lack terrestrial infrastructure. This has the potential to bridge the digital divide and bring the benefits of the internet to underserved populations.
  5. Challenges: While direct-to-device satellite communication offers numerous advantages, it also comes with challenges. These include regulatory issues, spectrum management, satellite constellation deployment, cost-effectiveness, and competition with existing terrestrial networks.
  6. Emerging Applications: Beyond traditional internet access, direct-to-device satellite communication can support a wide range of applications, including disaster management, environmental monitoring, precision agriculture, and autonomous vehicles.
  7. Economic Impact: The success of direct-to-device satellite communication could have a substantial economic impact, fostering innovation, creating job opportunities, and stimulating economic growth in various sectors.

Therefore, direct-to-device satellite communication represents a significant shift in how we think about connectivity, with the potential to reshape industries, bridge connectivity gaps, and create new opportunities for businesses and individuals. However, its success depends on addressing technical, regulatory, and economic challenges while capitalizing on the advantages it offers in terms of global coverage and low latency.

The global satellite services market is poised for growth in the coming years, with expectations of its value increasing from $107 billion in 2022 to $123 billion by 2032, according to projections by Euroconsult. Key insights from this forecast include:

  1. Data Services Surge: Data services revenues are expected to experience significant growth, nearly tripling from $19 billion in 2022 to $53 billion in 2032. This surge is indicative of the increasing demand for data connectivity, driven by applications like IoT, data analytics, and global internet access.
  2. Video Demand Shift: In contrast, Euroconsult foresees a slight dip in video demand, with revenues decreasing by about 20 percent from $88 billion in 2022 to $70 billion in 2032. This shift may be attributed to changing consumer preferences, including the rise of streaming services and on-demand content.
  3. Competition and Ecosystem Changes: Despite the overall optimism, the satellite services market is expected to face turbulence due to intense competition and a rapidly evolving ecosystem. The dynamics of the industry are shifting, with the emergence of new satellite constellations and technologies, challenging the established players.
  4. Insurance Impact: Recent anomalies in geostationary orbit, such as issues with satellites like Arcturus, Inmarsat 6 F2, and Viasat-3 Americas, are expected to impact the insurance market. These incidents have raised concerns and could lead to higher insurance costs for satellite operators.

In summary, the satellite services market is poised for growth, driven by increasing demand for data connectivity services. However, the industry faces challenges, including competition, ecosystem changes, and insurance concerns, which could impact its trajectory in the coming years. Nonetheless, satellite technology continues to play a crucial role in global connectivity and data transmission.

The Space Development Agency (SDA) is planning to launch 72 data-transport satellites in 2026, which will be part of the Tranche 2 Transport Layer Beta portion of a United States military mesh network. According to Frank Turner, SDA’s technical director, these satellites will have new and advanced capabilities, including direct-to-weapon communications. This represents a significant step forward in the development of military satellite technology.

The Tranche 2 Beta satellite order worth $1.5 billion was split between Lockheed Martin and Northrop Grumman, both of which had previously been awarded contracts for Tranche 1 Transport Layer satellites. SDA, an organization under the U.S. Space Force, is working on creating a mesh network of military satellites in low Earth orbit known as the Proliferated Warfighter Space Architecture. This network includes both a data transport layer and a missile-tracking sensor layer.

During the contract award process for Tranche 2 Beta, SDA received six bids. Turner mentioned that the agency would have preferred to involve more vendors, but the complexity of the mission and the specialized requirements, such as the need for advanced radios and waveforms for military tactical communications, limited their options. As a result, the selection of experienced Department of Defense (DoD) contractors was necessary.

SDA has expressed a desire to collaborate with a broader base of prime contractors and avoid favoring incumbents. However, due to the unique and complex nature of the payloads in Tranche 2 Beta, only a few companies in the industry possess the capabilities to meet these specific mission requirements.

The Tranche 2 Transport Layer Beta satellites are designed to integrate with radios using Ultra High Frequency (UHF) and S-band frequencies, which are essential for military and intelligence operations in the field. Additionally, each satellite is equipped with an Integrated Broadcast Service (IBS) payload. IBS is a legacy Department of Defense (DoD) network used to transmit tactical and strategic intelligence as well as targeting data from various sources. Typically, IBS payloads operate from geosynchronous satellites like the Mobile User Objective System (MUOS), which was developed by Lockheed Martin.

However, the challenge for the Transport Layer, according to Frank Turner of SDA, is to provide the same IBS service from low Earth orbit, which has never been attempted before. This is a complex task that involves developing the necessary technology and infrastructure to facilitate these communications from satellites in low Earth orbit, rather than the traditional geosynchronous orbit. Turner emphasized that this is a significant and challenging endeavor.

The primary goal of these capabilities is to fulfill the requirements and requests of the warfighter. They are looking for direct-to-weapon connectivity that can enable real-time engagements and communication with various assets in the field.

Furthermore, the Beta satellites will be tasked with establishing what Turner described as “extremely difficult” contacts with aircraft and missiles in flight. This indicates that the mission involves not only providing data connectivity but also facilitating real-time, dynamic communication and coordination with moving targets in the sky, adding an additional layer of complexity to the mission.

The Space Development Agency (SDA) is taking a commercial-like approach to build the Department of Defense’s (DoD) mesh network. This approach involves collaborating with a broad array of suppliers specializing in small satellites and laser communications terminals. SDA aims to create a flexible and diverse ecosystem of partners to meet its evolving satellite communication needs.

Frank Turner explained that the decision to choose two incumbent providers for Tranche 2 Beta was not taken lightly and was the result of extensive deliberation. SDA’s preference is to expand its supplier base and work with a wider range of contractors in the future.

SDA is actively engaging in discussions with military leaders to determine the necessary capabilities for Tranche 3 of the Transport Layer. This indicates the agency’s commitment to continually adapting and enhancing its satellite network to meet evolving defense requirements.

Currently, SDA is preparing for the launch of its second batch of Tranche 0 satellites and plans to commence launching 126 Tranche 1 satellites in September 2024. These Tranche 1 satellites will be equipped with inter-satellite optical links and are considered the infrastructure of the network. Tranche 2, which follows, will enable the network to support advanced communications capabilities, marking a significant milestone in SDA’s mission to create a robust and effective satellite communication system for the DoD.

On July 17th, a Rocket Lab Electron rocket successfully placed seven smallsats into orbit for three different customers. This launch not only marked a significant achievement in satellite deployment but also moved the company closer to realizing its goal of reusing the Electron rocket’s booster.

The launch took place at Rocket Lab’s Launch Complex 1 on New Zealand‘s Mahia Peninsula at 9:27 p.m. Eastern Time. Originally scheduled for July 14th, the launch was delayed to allow the company to make final preparations for both launching the rocket and recovering the booster.

During the mission, the Electron rocket’s kick stage executed multiple burns to deploy the payloads into their respective orbits. The deployment sequence began with four NASA Starling 6U smallsats and two Spire 3U smallsats, which were placed into a 575-kilometer sun-synchronous orbit. Subsequently, after two additional burns, the kick stage released Telesat’s LEO 3 satellite into a 1,000-kilometer orbit approximately an hour and 45 minutes after liftoff.

Among the payloads were four NASA Starling satellites that will test autonomous swarm operations, two Spire satellites intended to enhance the company’s weather data collection capabilities, and Telesat’s LEO 3 satellite, the largest spacecraft on the mission. LEO 3, built by the University of Toronto’s Space Flight Laboratory for Telesat, will aid the Canadian satellite operator in ongoing tests for its future Lightspeed constellation, which had previously been carried out by another prototype satellite nearing the end of its operational life.

The “Baby Come Back” mission presented Rocket Lab with an opportunity to test the viability of recovering and reusing the first smallsats stage of its Electron rocket. As part of their ongoing efforts, the company introduced several modifications to the rocket and adjusted its recovery approach. The initial plan to capture falling boosters mid-air was changed to allow them to land in the ocean. The mission’s webcast showed the retrieved booster on a ship shortly before the final satellite’s deployment.

Rocket Lab’s CEO, Peter Beck, expressed their progress towards reusability, stating that they are now closer than ever to achieving the first relaunch of a booster. Beck mentioned that the recovered booster was in excellent condition.

Beck did not provide a specific timeline for when reusability might be achieved. However, the company plans to reuse a Rutherford engine on an Electron launch later in the year. Wayne McIntosh, the team lead for Electron reusability at Rocket Lab, outlined a series of flight tests in the works before actual reuse is considered.

McIntosh stated that there will be incremental changes introduced in future launches, with a significant shift in the 45th flight. This launch dubbed the “golden child,” will involve sealing changes that will enable accurate vehicle disposition for reuse. The “Baby Come Back” mission marked the 39th flight of an Electron rocket.

Rocket Lab’s recent launch marked its seventh mission this year, encompassing six orbital launches and the launch of the suborbital variant named Hypersonic Accelerator Suborbital Test Electron (HASTE) from Virginia.

According to Peter Beck, the company’s CEO, Rocket Lab is sticking to its earlier projections of conducting up to 15 Electron launches in this year, a count that includes both orbital missions and HASTE flights. Beck acknowledged that the primary challenge in achieving this launch rate has been customer readiness. He mentioned that they anticipate a busy upcoming season as customers aim to finalize their preparations.

The shifts in the market, such as the bankruptcy of Virgin Orbit, have also influenced Rocket Lab’s operations. For instance, NorthStar Earth and Space, initially planning to launch their space situational awareness satellites with Virgin Orbit, switched to Rocket Lab and signed a contract to launch their first four satellites this autumn on an Electron rocket. Beck highlighted that Rocket Lab has observed increased interest from customers who had initially intended to launch with other providers. Notably, the NASA Starling satellites, originally slated for a Firefly Aerospace Alpha rocket launch, were eventually manifested for Rocket Lab’s mission.

Peter Beck noted that there has been a notable increase in defections from various emerging launch providers this year compared to previous years. Delays and concerns about early flight risks seem to be driving this shift. This trend indicates a degree of uncertainty and volatility within the industry as it continues to evolve.

Beck explained that in the early stages when all providers had only a few launches under their belts, the mission risk was relatively equal for everyone. However, as the industry matures and more launches are completed, the willingness to take on extra risk for potential cost savings diminishes. This is leading customers to opt for providers with proven track records and reliable services.

Rocket Lab has a launch planned for the end of the month, and the company intends to reveal further details about this upcoming mission in the near future.

Globalstar, the company responsible for Apple’s satellite-powered SOS application, reported a significant 50% rise in quarterly sales on August 3rd, attributed to promising growth in its business of connecting remote Internet of Things (IoT) devices.

Approximately half of Globalstar’s $55 million revenue during the quarter ending on June 30th was generated by wholesale capacity service revenues, largely driven by Apple. Apple has been utilizing Globalstar’s satellites since November for its iPhone emergency messaging feature.

In addition, the company’s commercial IoT segment contributed $9 million to the revenue, marking a 33% increase compared to the same period last year. Globalstar aims to expand this IoT business by introducing two-way services by the end of 2023. Currently, the IoT services are unidirectional, offering tracking and monitoring functions in regions with poor or no terrestrial network coverage. The integration of two-way capabilities would empower customers with command and control functionalities.

Apple is supporting Globalstar in launching 17 new satellites to enhance its low Earth orbit fleet. In exchange, Apple will have access to 85% of the satellite capacity for its emergency messaging requirements. The remaining 15% of capacity could potentially accommodate a substantial increase in commercial IoT subscribers, as indicated by B. Riley analyst Mike Crawford.

According to CEO David Kagan, Globalstar is confident about securing a substantial portion of the remaining satellite capacity, especially following the implementation of its two-way module.

Kagan stated that half of the required infrastructure for the two-way IoT service has been deployed across Globalstar’s gateways. The company is preparing to initiate beta services for select clients later this year.

Furthermore, Globalstar confirmed that its upcoming next-generation satellites are progressing as scheduled for launch in 2025. These launches adhere to the original agreements with MDA and Rocket Lab. The satellites are currently entering a critical design review phase, indicating steady progress in their development.

The supply chain challenges that previously caused delays in producing Globalstar’s legacy Spot GPS and messaging devices have been resolved by mid-April, as reported by Kagan during the earnings call.

Despite a 4% decrease in Spot service revenues for the second quarter of 2023, Kagan anticipates a surge in subscriber numbers throughout this year. Adjusted EBITDA witnessed a substantial 86% increase, reaching $27 million.

The company has revised its revenue expectations for 2023, now projecting a range between $200 million and $230 million. This represents a growth of 35% to 55% compared to 2022. The earlier guidance had indicated total sales between $185 million and $230 million for 2023. These estimates exclude potential revenue from Globalstar’s spectrum leasing for terrestrial use.

During the earnings call, Globalstar’s Executive Chair, James Monroe, expressed optimism about the adoption of devices capable of utilizing the company’s Band 53 frequencies. Monroe expects these devices to reach hundreds of millions by the same time next year, as Globalstar continues discussions with terrestrial partners and regulatory authorities worldwide.