Tag Archive for: LEO

Sony

Sony has formed a company to develop laser communications equipment for small satellites, drawing on optical disc technology it pioneered for CD players and other devices.

The Japanese conglomerate said June 2 it founded Sony Space Communications (SSC) in San Mateo, California, to help companies avoid running out of radio waves as the number of satellites in low Earth orbit (LEO) soars.

SSC plans to develop, build and supply devices that would enable small satellites to use laser beams instead of radio frequencies to communicate with ground stations — and each other for real-time connectivity.

The volume of data used in LEO is increasing every year but the amount of radio waves is limited, SSC president Kyohei Iwamoto said in a statement.

“Additionally, the need for frequency licenses for radio waves and the requirement for lower power consumption of communication equipment needed by smaller satellites, like micro satellites, are also issues to be addressed,” he said.

Conventional radio communications need larger satellite antennas and more power than optical networks, Sony said, making it “physically difficult” to achieve high speeds on small satellites.

Sony said it has been researching and developing optical communications systems that are small enough to fit microsatellites, which NASA defines as spacecraft between 10 and 100 kilograms.

The company did not say when its devices could be available or if it had customers lined up for the technology.

SSC plans to apply its optical disc technology to create satellite communication devices that are ultra-compact, lightweight, mass-producible and able to withstand harsh conditions in space.

In 2020, Sony said an optical communications device it developed in cooperation with Japan’s space agency was installed on Kibo, the Japanese experimental module on the International Space Station.

According to Sony, SOLISS, or Small Optical Link for International Space Station, established a bidirectional laser communications link with a space optical communication ground station in Japan, and successfully transmitted high-definition image data.

Sony also said it successfully conducted a data file transfer experiment this year that it says provides “the technological basis” for internet services through LEO optical communications.

MynaricCACITesat and other companies are also building out optical space businesses as laser communications technology matures.

Japan-based startup Warpspace is developing an inter-satellite laser communications system, and is also establishing a U.S. presence as it seeks to partner with American companies and compete for government and military contracts.

Project Kuiper

Amazon continues to deliver on its roadmap for Project Kuiper, a low Earth orbit (LEO) satellite system designed to provide fast, affordable broadband to unserved and underserved communities around the world. Amazon say they are excited to announce they’ve secured up to 83 launches from three commercial space companies—ArianespaceBlue Origin, and United Launch Alliance (ULA)—to provide heavy-lift capacity for the program. These agreements mean they have enough capacity to carry into space the majority of the 3,236 satellites that make up their satellite constellation.

The three agreements include 38 launches on ULA’s Vulcan Centaur rocket, 18 launches on Arianespace’s Ariane 6, and 12 launches on Blue Origin’s New Glenn, with options for 15 additional launches. Together, they represent the largest commercial procurement of space launch services in history, and their investments will support thousands of suppliers and highly skilled jobs in the space industry across the United States and Europe.

Preparing to delight customers around the world

As part of Amazon’s family of products and services, Project Kuiper is working to deliver high-speed, low-latency broadband service at an affordable price. The Kuiper System includes three key elements: advanced LEO satellites; small, affordable customer terminals; and a secure, resilient ground-based communications network.

Project Kuiper will leverage Amazon’s global logistics and operations footprint to provide excellent customer service and Amazon Web Services will provide networking and infrastructure to serve a diverse, global customer base. They’ll also apply Amazon’s experience producing low-cost devices and services like Echo and Kindle to deliver broadband service at an affordable, accessible price for customers.

Once deployed, the Kuiper System will serve individual households, as well as schools, hospitals, businesses, disaster relief efforts, government agencies, and other organizations operating in places without reliable broadband.

A global launch partnership

Launch partners will provide Amazon with heavy-lift launch services over a five-year period. Heavy-lift rockets offer the right combination of capacity, performance, and cost to get the constellation to space efficiently. Project Kuiper satellites will launch on Arianespace’s Ariane 6 rocket out of the Guiana Space Center in French Guiana, and Blue Origin’s New Glenn and ULA’s Vulcan Centaur rockets out of Cape Canaveral Space Force Station in Florida.

“These launch agreements reflect our incredible belief in Project Kuiper, and we’re proud to be working with such an impressive lineup of partners to deliver on our mission,” said Amazon Senior Vice President Dave Limp, who oversees Amazon Devices & Services. “Securing launch capacity from multiple providers reduces scheduling risk and helps us secure competitive, long-term pricing that we can pass on to Project Kuiper customers as cost savings.”

The new agreements are in addition to the existing deal for nine launches on Atlas V vehicles from ULA to help deploy the Project Kuiper constellation, as well as two RS1 launches from ABL Space Systems to deploy the prototype KuiperSat-1 and KuiperSat-2 satellites.

Scalable technology to dispense satellites

Launch is just one piece of getting satellites safely into space. It also needs a system to securely deploy satellites at the correct altitudes for insertion into orbit. Amazon have completed an agreement with Switzerland-headquartered Beyond Gravity (formerly RUAG Space) to build the low-cost, versatile satellite dispensers that will deploy the Project Kuiper constellation. Beyond Gravity’s dispensers can easily scale up and down in capacity to fit the different rockets we’re using.

The Project Kuiper contract is the single-largest order in Beyond Gravity’s history. The company is doubling its production capacity as a result, opening a second production facility in Linköping, Sweden, where it will create dozens of jobs.

Bolstering the commercial space industry

These investments in Project Kuiper will also benefit the wider launch services industry, accelerating the pace of innovation, improving launch infrastructure, and supporting thousands of suppliers and highly skilled jobs in 49 U.S. states and 13 European countries.

For instance, in addition to launch services, the contract with ULA also covers production and launch infrastructure to support more launches, timed closer together, at the Cape Canaveral Space Force Station. That work includes a new, dedicated version of the Vulcan Launch Platform. ULA is also making investments in their Spaceflight Processing and Operations Center to deliver a second ULA facility capable of full vehicle processing, with two parallel “launch lanes” for high-cadence operations.

There are now more than 1,000 people working on the Project Kuiper program as they prepare to serve tens of millions of customers around the world.

LEO

LEO satellite broadband connectivity’s demand has been ever increasing. As of 2020, there were one billion broadband subscriptions including Digital Subscriber Line (DSL), cable, or fiber-optic broadband services. Telecoms have been working to replace low-speed DSL broadband with fiber-optic broadband service. In 2020 alone, there were 42 million fiber-optic broadband net additions.

Cable network operators also continue to upgrade the networks to DOCSIS 3.1 to support Gigabit speed broadband access. Despite the advancements in different broadband technologies, only around half of total households in the world are connected to a type of fixed broadband. Among the households which are not connected to fixed broadband access, mobile network is the primary connectivity for internet access since many populations use internet via their mobile phones. Fixed Wireless Access (FWA) broadband services using mobile networks and proprietary technologies have also been filling the broadband gap across different markets. Satellite has been an important technology to provide broadband in remote areas where it is challenging to deploy other terrestrial broadband networks.

The COVID-19 pandemic spotlighted the importance of broadband connectivity in both social and economic aspects of work, learning, communication, shopping, and healthcare. Although network operators have managed the traffic surge contributed by home broadband networks well, governments around the world have witnessed that populations without efficient connectivity faced challenges to navigate through the pandemic. While households in the areas with limited fixed infrastructure need to rely on mobile network to access internet, it should be noted that 8 percent of the world’s population is still outside the mobile internet coverage according to the GSA. There is clearly a digital divide across different markets which needs to be addressed.

The Role of Satellite Broadband

Internet access via satellite networks has been a crucial solution for use cases such as emergency response, maritime, aviation, and broadband access in remote areas. Geostationary Orbit (GEO) satellite systems are the primary platform to provide broadband service, but only at a limited speed, between 5 Megabytes per second to 100 Megabytes per second, and with high latency, around 500 milliseconds, compared to other broadband platforms. Hardware and installation cost, usually above $300 is relatively high for consumers in emerging markets to get satellite broadband service. It is estimated that satellite market is providing around 3.5 million subscriptions worldwide as of today with the highest subscriber concentration in North America, followed by Europe.

Although satellite networks cover almost everywhere around the world, high cost of receiver hardware, low speed, and high latency have been a barrier for satellite broadband services to gain mass adoption. Recent Low-Earth Orbit (LEO) satellite development by SpaceX, OneWeb, and Amazon’s Project Kuiper are expected to change market dynamics since shorter distance from Earth’s surface enables LEO satellites to support latency as low as 30 milliseconds.

What is the Outlook for LEO Satellite Broadband in 2022?

LEO satellite broadband is still a niche market. According to SpaceX, which launched LEO broadband service Starlink in late 2020, it has now achieved around a 90,000-user base. It recently gained license to operate StarLink service in Mexico and is now trying to secure license to operate in India, one of the markets with lowest fixed broadband penetration. OneWeb, another LEO platform which aims to enter broadband market, has launched over 300 satellites in late 2021 after securing agreement with AT&T to provide broadband connectivity for AT&T business customers. Amazon provide a new progress regarding Project Kuiper as they announced that they have secured up to 83 launches from three commercial space companies—ArianespaceBlue Origin, and United Launch Alliance (ULA)—to provide heavy-lift capacity for the program..

Although LEO platforms supports low latency, high terminal cost is possibly a key challenge to expanding the customer base. Considering majority of the market opportunity existing in emerging market, heavily subsidized terminal cost of $500 is beyond the reach of most consumers. Despite attempts by industry players to reduce terminal cost, the current adoption rate which needs only low hardware volume, terminal cost deduction cannot be done enough yet. Furthermore, LEO platforms face inevitable competition from terrestrial broadband platforms. Especially the expansion of LTE networks and future 5G roll outs in emerging markets will continue to compete against LEO broadband services. Due to mass adoption, terrestrial networks tend to achieve faster ecosystem development which brings wider choice of hardware and software and lower cost to develop cost per user.

LEO platforms will need other players coming into the market soon since competition is expected to increase adoption rate and create a force to lower the terminal cost. Considering current market dynamics, there is a potential to of LEO broadband market to grow in 2022, however at the limited pace. LEO broadband services are likely to gain subscriber base from both consumer and business segments in advanced markets. However, business and government user base are likely to be major drivers of LEO broadband market in emerging markets. Initial target of LEO platforms is not to replace wired broadband services, but to connect the unconnected population. To achieve their goal, the ability to support enough capacity in targeted market is crucial. As competition arrives, improvements in hardware cost and features are expected to speed up accelerating the adoption in the residential market in the next few years.

Space

Commercial space is booming with possibilities.

Aeronautical engineer Austin Link entered his post-graduate career amid the initial SpaceX Falcon 9 launches, dreaming about a future on orbit where, as he puts it, “we could sail the stars, and explore new things and provide value to humanity.”

And while Link isn’t sailing the stars — at least not yet, literally — he is fulfilling his dream to provide value to humanity through his two-year-old start-up venture Starfish Space.

The Kent, Wash., company, which he cofounded with engineer and former Blue Origin colleague Trevor Bennett, secured $7 million in Series A funding in September to build a prototype of the Otter space tug, a versatile satellite servicing vehicle that will provide life extension and end-of-life services for satellites in Geostationary Orbit (GEO). The goal, says Link, is to ensure satellites leave behind as little footprint as possible, and don’t add to the estimated 6,000 tons of space debris circulating in Low-Earth Orbit (LEO).

“That’s important right now because five times as many satellites will be launched in the 2020s as all of human history,” says Link. “That changes the game, in that space debris is no longer just a nuisance or a good Sandra Bullock movie. It’s really a threat to these constellations we’ve put in this orbit.”

Meanwhile, legacy space and satellite enterprises have upped their commitments to sustainability through both investments and innovations in the areas of space debris removal, space situational awareness, and space traffic management. These range from the rollout of Northrop Grumman’s Mission Extension Vehicles (MEV), which have provided refueling services for Intelsat GEO satellites, to the endeavors of communications leaders like OneWeb, which recently installed Astroscale’s next-generation ferromagnetic docking plate to its satellites to enable more efficient servicing.

In one of the most telling signs of sustainability’s relevance in the new space economy, the Consortium for Execution of Rendezvous and Servicing Operations (CONFERS), an industry organization funded by Defense Advanced Research Projects Agency (DARPA), has grown from a six-member organization to 51 in the span of three and a half years.

“Space sustainability is a holistic endeavor that involves multiple companies, multiple countries,” says Chris Blackerby, group COO of Astroscale, which launched in 2013 with a focus on space debris removal and has expanded its business to on-orbit servicing solutions. “Just like we have road traffic monitors, and roadside services like the AAA in the United States removing vehicles on our highways, we need to have a similar set of parameters and services in space.”

There are still many uncertainties around the governance of space-traffic management activities, and whether industry coalitions can agree on standards for responsible space development. But while these questions linger, organizations in the business of space sustainability say they’re mostly optimistic that today’s innovations will ensure utopian visions of New Space materialize, and that connectivity on Earth isn’t compromised by free-floating debris.

Preventive Care for Good Space Health

Within 10 years, satellite manufacturing and launch order volumes are projected to reach 24,700, according to a July 2021 report by satellite market research firm NSR.

That’s why companies like LeoLabs are focusing on prevention — specifically, on helping organizations launching satellites protect their million-dollar space assets and improve decision-making.

The six-year-old company, a venture-funded spinout of SRI International, recently raised $65 million in Series B funding to expand its LEO mapping and space situational awareness services. The organization uses radar technologies and predictive analytics to monitor orbital debris and assess the risk of collision. Current customer partners include SpaceX, which uses LeoLabs’ services to track its newly launched satellites, as well as Earth Observation (EO) organizations Maxar, Planet, Spire, as well as government agencies such as the National Oceanic and Atmospheric Administration (NOAA).

“There have always been hurricanes, going back millions of years. Because we have so many buildings and structures on the coastline, we care a lot about hurricanes — and it’s the same in space, where collisions wreck the value of infrastructure,” Dan Ceperley, LeoLabs co-founder and CEO, tells Via Satellite. “A lot of people talk about these mega-constellations as if they’re causing the problem. But they’re not the cause of the problem — they’re the victim of the environment they have to operate in. If you’re launching into space, you’re more likely to be hit by debris launched decades ago that you are by a satellite in one of these [new] constellations.”

The organization’s global network of ground infrastructure, including ground-based phased array radar systems in Alaska, Texas, New Zealand, and Costa Rica, generates data feeds and real-time alerts that inform decision-making, such as whether to move a satellite in another direction to avoid collision. It’s not unlike clinical-decision support technologies used by hospital physicians to assess the risks of performing a complex medical procedure.

“We’re talking about predicting a close approach,” says Ceperley. “We’re talking about tens of feet of difference, like ‘You’re going to pass 50 feet apart after you’ve completed 100 more laps around the earth.’ We have to be able to predict days into the future to provide an effective service.”

Boosting the Life of Legacy Investments

While protecting satellites in LEO is foundational to the notion of space sustainability, so is ensuring existing legacy investments are as healthy as possible.

That’s why in June 2020, Astroscale acquired Effective Space solutions, an Israeli company focused on the servicing, repairing, and life extension of GEO satellites. The financial benefits of servicing are clear: Launching satellites costs money, and through satellite launch extension services, an operator can remain flexible as it rolls out new market offerings and can hold onto its spectrum longer.

“This underpins everything we’re doing,” says Blackerby. “We’re able to move from a throwaway culture of single-use space assets that regularly increases risk and decreases ROI in orbit to a servicing culture that benefits all space actors and the overall orbital environment. The space sector must grow on a foundation of sustainable orbital infrastructure and on-orbit servicing is at the center of that infrastructure.”

Clearing up the Mess

The business of clearing junk — while not as sexy as other missions — is even more essential than it was eight years ago, when Astroscale launched. Space junk is a growing threat, as evidenced by incidents such as the recent debris-induced damage of the International Space Station’s robotic arm.

As such, the market for space debris monitoring and removal market is projected to grow by $610 million between 2020 and 2024, according to a report by Technavio.

“It’s still a low-probability event that we’ll have an accident today or tomorrow or next week, but the impact of an event that does happen will become significant,” says Blackerby.

According to the European Space Agency (ESA), which tracks debris objects through its Space Surveillance and Tracking networks, more than 22,000 objects are currently floating around space as of January 2019, but the number could double. Events such as Russia’s surprise Anti-Satellite (ASAT) weapon test this month, which resulted in an explosion of debris, have amplified the problem.

Nevertheless, Blackerby seems encouraged by some of the milestones his organization and others have achieved. For example: In August, the company completed a demonstration of its ELSA-d (End-of-Life Services by Astroscale-demonstration) using a magnetic capture system to quickly capture a client spacecraft after releasing it.

During the release-and-capture period, Astroscale’s Mission Operations and Ground Segment teams checked out and calibrated the rendezvous sensors and verified relevant ground system infrastructure and operational procedures. In the coming months, the organization is preparing for a more complex “capture without tumbling” demonstration, in which the client will be separated to a greater distance.

Meanwhile, Swiss start-up ClearSpace, a private company formed in 2018, recently signed a debris removal contract with the European Space Agency to help capture and deorbit a 100-kilogram piece of an Arianespace Vega rocket left in orbit in 2013. The ClearSpace 1.0 mission, scheduled for 2025, will attempt to use a spacecraft equipped with four robotic arms to capture the debris, and drag it into Earth’s atmosphere.

“Our first mission will remove a piece of debris which was not designed for capture, is uncontrolled, and tumbling,” says Tim Maclay, ClearSpace CTO. “These characteristics present a number of unique challenges that require the development of particularly robust solutions for rendezvous, proximity operations, and robotic capture. These elements will then form a solid foundation for addressing a wide variety of services in the future — such as inspection, disposal, mission extension, and repair — for both government and commercial customers.”

Rules of the Road

Given the uptick in space traffic, coupled with sustainability and debris removal missions, questions as to who has the responsibility to manage space traffic loom larger. But while progress with innovation and rulemaking is slower than some might desire, it is still being made.

As Politico reported in May, the American Institute of Aeronautics and Astronautics, the world’s largest aerospace technical society, is stepping up its efforts to ensure the commercial air traffic system is coordinated with expanding space traffic. The organization reportedly established a committee to consider the integration between space traffic management and air management, and to establish (at least in the U.S.), who is responsible for overseeing space debris/space traffic management.

And in June 2021, the European Space Agency announced plans to roll out a space sustainability rating system, which will score space operators on the sustainability of their missions, to increase transparency and recognize responsible behavior.

Meanwhile, the Space Data Association (SDA) is working alongside space situational awareness software company Comspoc to provide governments in the U.S. and Europe with the understanding and tools they need to develop their own space traffic management capabilities, which will ultimately improve space safety for all operators.

“We are continually looking at ways to improve our systems and processes, as well as driving change within the industry as a whole,” says Pascal Wauthier, SDA chairman and executive director.

The SDA also worked with Comspoc to conduct a study to demonstrate the importance of fusing different measurements data and satellite information to improve the accuracy of alerts and collision warnings.

“As the use of space increases, so does the complexity of aggregating the data available,” says Wauthier. “The existing data-sharing solutions certainly reduce the risks associated with in-orbit collisions. However, with the number of satellites increasing, there is a distinct need for development. Beyond advances in systems, we also must review what data we are collecting to support effective data fusion. Could we share information regarding maneuverability? Do we know a satellite’s future movements? Data sharing the relevant information is critical.”

“We also feel that governments have a responsibility for space traffic management,” he continues. “The use of space and satcom is critical to many aspects in day-to-day life, and there must be a coordinated approach to its management. Input from governments would ensure that all space users are adhering to standards to prevent in-orbit events which could have a detrimental effect on all space users.”