Tag Archive for: SpaceX

TBIRD

The Pathfinder Technology Demonstrator 3 (PTD-3) mission, carrying the TeraByte InfraRed Delivery (TBIRD) system, will debut on May 25 as part of SpaceX’s Transporter-5 rideshare launch. TBIRD will showcase the high-data-rate capabilities of laser communications from a CubeSat in low-Earth orbit. At 200 gigabits per second (Gbps), TBIRD will downlink data at the highest optical rate ever achieved by NASA.

NASA primarily uses radio frequency to communicate with spacecraft, but with sights set on human exploration of the Moon and Mars and the development of enhanced scientific instruments, NASA needs more efficient communications systems to transmit significant amounts of data. With more data, researchers can make profound discoveries. Laser communications substantially increases data transport capabilities, offering higher data rates and more information packed into a single transmission.

“TBIRD is a game changer and will be very important for future human exploration and science missions.” said Andreas Doulaveris, TBIRD’s mission systems engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

With a single seven-minute pass at 200 Gbps, TBIRD will send back terabytes of data and give NASA more insight into the capabilities of laser communications. The addition of laser communications to spacecraft is similar to switching from dial-up to high-speed internet. 

“As future science instruments and imaging systems incorporate the latest technology advancements, they’ll return very large volumes of data on a daily basis,” said Jason Mitchell, Director of the Advanced Communications and Navigation Technology division within NASA’s Space Communications and Navigation (SCaN) program. “These missions will need the downlink capabilities that laser communications can provide.”

The TBIRD system, funded by SCaN and built by the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, is about the size of a tissue box and is integrated into PTD-3, a CubeSat that is the size of two stacked cereal boxes.

The Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley manages the PTD mission series. The PTD series leverages a common commercial spacecraft to provide a robust platform for effective testing of technologies with minimal redesign in between launches.

“Small spacecraft continue to prove themselves vital building blocks for larger, more complicated missions,” said Roger Hunter, program manager for Small Spacecraft Technology at Ames. “We are pushing the envelope by increasing the pace of subsystem technology demonstrations through the innovations of our industry partners.”

Historically, most new spacecraft missions have required custom spacecraft designs based on the requirements of their payloads. This step is as costly and complex as redesigning a car every time a person needs to travel. Each PTD mission uses the same spacecraft bus and avionics platform designs with the goal of increasing efficiency and reducing the amount of time required for mission planning and design.

Terran Orbital of Irvine, California, provides the spacecraft, integrates the payload, and operates PTD missions. This approach allows the PTD series to rapidly and affordably demonstrate new subsystem technologies for increasing small spacecraft capabilities.

In addition to being on a standardized commercial spacecraft, TBIRD was also built from existing commercial, telecommunications hardware products that were modified for the extreme environment of space. Leveraging existing components increases efficiency and creates cost savings.

In the course of the mission, PTD-3 will demonstrate highly stable body pointing, meaning the spacecraft can be precisely directed toward the ground station to facilitate TBIRD’s downlink demonstration. TBIRD’s streamlined design does not contain any moving mechanisms, so the spacecraft’s pointing ability enables the laser communications telescope’s connection from space to ground. TBIRD’s ground station is in Table Mountain, California, and is managed by NASA’s Jet Proplusion Laboratory in Southern California.

During TBIRD’s six-month operations, NASA and its partners will gather as much information as possible about laser communications functionality on small satellites. PTD-3 will launch as soon as May 25, 2022, from Cape Canaveral Space Force Station in Florida on SpaceX’s Transporter-5 rideshare mission, which will use a Falcon 9 rocket to launch multiple CubeSats.

Together, PTD-3 and TBIRD have the capacity to help NASA make giant leaps in the advancement of space technology for laser communications and the overall utility of small spacecraft to support exploration and science goals.

A second, separate technology demonstration supported by NASA’s Small Spacecraft Technology program will also be aboard the Transporter-5 launch: the CubeSat Proximity Operations Demonstration, which will demonstrate rendezvous, proximity operations, and docking using two 3-unit CubeSats.

Transporter-5

SpaceX’s Transporter-5 mission launched several dozen payloads on its fifth dedicated rideshare mission May 25, illustrating the continued demand for such missions even as dedicated small launch vehicles emerge.

The Falcon 9 lifted off from Space Launch Complex 40 at Cape Canaveral, Florida, USA at 2:35 p.m. Eastern. The rocket’s booster, flying its eighth mission, landed on a droneship in the Atlantic Ocean eight and a half minutes after liftoff.

The Transporter-5 mission carried 59 payloads, which SpaceX described as including satellites, orbital transfer vehicles and non-deploying hosted payloads. The latter included Nanoracks’ Outpost Mars Demo 1 experiment to test technologies for cutting into upper stages.

Among the satellites that Transporter-5 deployed into sun-synchronous orbit, rideshare aggregator Exolaunch accounted for 21 satellites, including satellites for Iceye, Satellogic and Spire. Smallsat manufacturer Terran Orbital flew satellites for several customers, such as Fleet, GeoOptics and NASA.

Other companies that had satellites on Transporter-5 are HawkEye 360, which flew another cluster of three radio-frequency intelligence satellites; GHGSat, which launched three satellites to monitor greenhouse gas emissions; and Umbra, which launched a synthetic aperture radar imaging satellite.

The mission carried several orbital transfer vehicles, including the first from Momentus. Its Vigoride-3 tug carried payloads for two customers, FOSSA Systems and Orbit NTNU, but is principally a technology demonstration of the tug itself and its propulsion system, which uses a technology called microwave electrothermal thruster (MET).

“Testing the MET on this first Vigoride flight is one of the important tasks that we plan to conduct as we continue to refine and improve its performance,” John Rood, chief executive of Momentus, said in a statement after the launch. The launch marked a culmination of not just technical development of the tug but also securing regulatory approvals after the government blocked two attempts to fly a Vigoride tug last year on other Transporter rideshare missions.

D-Orbit flew its own tug, an Ion Satellite Carrier mission called Infinite Blue, on Transporter-5. The tug will deploy two cubesat payloads and support two hosted payloads.

Spaceflight flew its Sherpa-AC vehicle on Transporter-5 as well. That version of Sherpa includes augmented attitude control capabilities that the company says makes it well-suited for flying hosted payloads. This vehicle carried two hosted payloads as well as three smallsats. SpaceX announced in March that it would sever ties with Spaceflight, but only after missions already manifested.

Transporter-5 was SpaceX’s fifth dedicated smallsat rideshare mission and the third this year, after Transporter-3 in January and Transporter-4 in April. The next rideshare mission, Transporter-6, is scheduled for October.

Demand for those missions remains strong. “SpaceX rideshare is getting fully booked,” said Max Haot, chief executive of Launcher, during a panel at Space Tech Expo here May 25. His company is developing its own orbital transfer vehicle, Orbiter, that will make its first flight on Transporter-6.

Launcher has booked Orbiter flights on several more Transporter missions in 2023, and he said those future Transporter missions are already filling up.

Orbital transfer vehicles can help bridge the gap, he said, between pure rideshare missions where payloads have little or no control on the orbit they’re placed in and dedicated smallsat launches like Rocket Lab’s Electron, which offers greater control but at a higher price. “We’ll be able to make SpaceX rideshare more useful.”

Lars Hoffman, senior vice president of global launch services at Rocket Lab, acknowledged that Electron costs more than a SpaceX rideshare, but took issue with Haot’s claim the difference was a factor of 10. Rocket Lab has charged up to $10 million for an Electron launch, in the case of the upcoming NASA CAPSTONE lunar cubesat mission, although some commercial launches are less expensive. SpaceX currently charges $1.1 million for 200 kilograms of rideshare payload.

“They are more expensive because we are offering a service that delivers the payloads exactly where they want to go when they want to be there, and that’s where the customers will pay a premium,” he said on the panel. “There’s not a 10 times differential in price, though.”

LEO

LEO satellite broadband connectivity’s demand has been ever increasing. As of 2020, there were one billion broadband subscriptions including Digital Subscriber Line (DSL), cable, or fiber-optic broadband services. Telecoms have been working to replace low-speed DSL broadband with fiber-optic broadband service. In 2020 alone, there were 42 million fiber-optic broadband net additions.

Cable network operators also continue to upgrade the networks to DOCSIS 3.1 to support Gigabit speed broadband access. Despite the advancements in different broadband technologies, only around half of total households in the world are connected to a type of fixed broadband. Among the households which are not connected to fixed broadband access, mobile network is the primary connectivity for internet access since many populations use internet via their mobile phones. Fixed Wireless Access (FWA) broadband services using mobile networks and proprietary technologies have also been filling the broadband gap across different markets. Satellite has been an important technology to provide broadband in remote areas where it is challenging to deploy other terrestrial broadband networks.

The COVID-19 pandemic spotlighted the importance of broadband connectivity in both social and economic aspects of work, learning, communication, shopping, and healthcare. Although network operators have managed the traffic surge contributed by home broadband networks well, governments around the world have witnessed that populations without efficient connectivity faced challenges to navigate through the pandemic. While households in the areas with limited fixed infrastructure need to rely on mobile network to access internet, it should be noted that 8 percent of the world’s population is still outside the mobile internet coverage according to the GSA. There is clearly a digital divide across different markets which needs to be addressed.

The Role of Satellite Broadband

Internet access via satellite networks has been a crucial solution for use cases such as emergency response, maritime, aviation, and broadband access in remote areas. Geostationary Orbit (GEO) satellite systems are the primary platform to provide broadband service, but only at a limited speed, between 5 Megabytes per second to 100 Megabytes per second, and with high latency, around 500 milliseconds, compared to other broadband platforms. Hardware and installation cost, usually above $300 is relatively high for consumers in emerging markets to get satellite broadband service. It is estimated that satellite market is providing around 3.5 million subscriptions worldwide as of today with the highest subscriber concentration in North America, followed by Europe.

Although satellite networks cover almost everywhere around the world, high cost of receiver hardware, low speed, and high latency have been a barrier for satellite broadband services to gain mass adoption. Recent Low-Earth Orbit (LEO) satellite development by SpaceX, OneWeb, and Amazon’s Project Kuiper are expected to change market dynamics since shorter distance from Earth’s surface enables LEO satellites to support latency as low as 30 milliseconds.

What is the Outlook for LEO Satellite Broadband in 2022?

LEO satellite broadband is still a niche market. According to SpaceX, which launched LEO broadband service Starlink in late 2020, it has now achieved around a 90,000-user base. It recently gained license to operate StarLink service in Mexico and is now trying to secure license to operate in India, one of the markets with lowest fixed broadband penetration. OneWeb, another LEO platform which aims to enter broadband market, has launched over 300 satellites in late 2021 after securing agreement with AT&T to provide broadband connectivity for AT&T business customers. Amazon provide a new progress regarding Project Kuiper as they announced that they have secured up to 83 launches from three commercial space companies—ArianespaceBlue Origin, and United Launch Alliance (ULA)—to provide heavy-lift capacity for the program..

Although LEO platforms supports low latency, high terminal cost is possibly a key challenge to expanding the customer base. Considering majority of the market opportunity existing in emerging market, heavily subsidized terminal cost of $500 is beyond the reach of most consumers. Despite attempts by industry players to reduce terminal cost, the current adoption rate which needs only low hardware volume, terminal cost deduction cannot be done enough yet. Furthermore, LEO platforms face inevitable competition from terrestrial broadband platforms. Especially the expansion of LTE networks and future 5G roll outs in emerging markets will continue to compete against LEO broadband services. Due to mass adoption, terrestrial networks tend to achieve faster ecosystem development which brings wider choice of hardware and software and lower cost to develop cost per user.

LEO platforms will need other players coming into the market soon since competition is expected to increase adoption rate and create a force to lower the terminal cost. Considering current market dynamics, there is a potential to of LEO broadband market to grow in 2022, however at the limited pace. LEO broadband services are likely to gain subscriber base from both consumer and business segments in advanced markets. However, business and government user base are likely to be major drivers of LEO broadband market in emerging markets. Initial target of LEO platforms is not to replace wired broadband services, but to connect the unconnected population. To achieve their goal, the ability to support enough capacity in targeted market is crucial. As competition arrives, improvements in hardware cost and features are expected to speed up accelerating the adoption in the residential market in the next few years.

Space

Commercial space is booming with possibilities.

Aeronautical engineer Austin Link entered his post-graduate career amid the initial SpaceX Falcon 9 launches, dreaming about a future on orbit where, as he puts it, “we could sail the stars, and explore new things and provide value to humanity.”

And while Link isn’t sailing the stars — at least not yet, literally — he is fulfilling his dream to provide value to humanity through his two-year-old start-up venture Starfish Space.

The Kent, Wash., company, which he cofounded with engineer and former Blue Origin colleague Trevor Bennett, secured $7 million in Series A funding in September to build a prototype of the Otter space tug, a versatile satellite servicing vehicle that will provide life extension and end-of-life services for satellites in Geostationary Orbit (GEO). The goal, says Link, is to ensure satellites leave behind as little footprint as possible, and don’t add to the estimated 6,000 tons of space debris circulating in Low-Earth Orbit (LEO).

“That’s important right now because five times as many satellites will be launched in the 2020s as all of human history,” says Link. “That changes the game, in that space debris is no longer just a nuisance or a good Sandra Bullock movie. It’s really a threat to these constellations we’ve put in this orbit.”

Meanwhile, legacy space and satellite enterprises have upped their commitments to sustainability through both investments and innovations in the areas of space debris removal, space situational awareness, and space traffic management. These range from the rollout of Northrop Grumman’s Mission Extension Vehicles (MEV), which have provided refueling services for Intelsat GEO satellites, to the endeavors of communications leaders like OneWeb, which recently installed Astroscale’s next-generation ferromagnetic docking plate to its satellites to enable more efficient servicing.

In one of the most telling signs of sustainability’s relevance in the new space economy, the Consortium for Execution of Rendezvous and Servicing Operations (CONFERS), an industry organization funded by Defense Advanced Research Projects Agency (DARPA), has grown from a six-member organization to 51 in the span of three and a half years.

“Space sustainability is a holistic endeavor that involves multiple companies, multiple countries,” says Chris Blackerby, group COO of Astroscale, which launched in 2013 with a focus on space debris removal and has expanded its business to on-orbit servicing solutions. “Just like we have road traffic monitors, and roadside services like the AAA in the United States removing vehicles on our highways, we need to have a similar set of parameters and services in space.”

There are still many uncertainties around the governance of space-traffic management activities, and whether industry coalitions can agree on standards for responsible space development. But while these questions linger, organizations in the business of space sustainability say they’re mostly optimistic that today’s innovations will ensure utopian visions of New Space materialize, and that connectivity on Earth isn’t compromised by free-floating debris.

Preventive Care for Good Space Health

Within 10 years, satellite manufacturing and launch order volumes are projected to reach 24,700, according to a July 2021 report by satellite market research firm NSR.

That’s why companies like LeoLabs are focusing on prevention — specifically, on helping organizations launching satellites protect their million-dollar space assets and improve decision-making.

The six-year-old company, a venture-funded spinout of SRI International, recently raised $65 million in Series B funding to expand its LEO mapping and space situational awareness services. The organization uses radar technologies and predictive analytics to monitor orbital debris and assess the risk of collision. Current customer partners include SpaceX, which uses LeoLabs’ services to track its newly launched satellites, as well as Earth Observation (EO) organizations Maxar, Planet, Spire, as well as government agencies such as the National Oceanic and Atmospheric Administration (NOAA).

“There have always been hurricanes, going back millions of years. Because we have so many buildings and structures on the coastline, we care a lot about hurricanes — and it’s the same in space, where collisions wreck the value of infrastructure,” Dan Ceperley, LeoLabs co-founder and CEO, tells Via Satellite. “A lot of people talk about these mega-constellations as if they’re causing the problem. But they’re not the cause of the problem — they’re the victim of the environment they have to operate in. If you’re launching into space, you’re more likely to be hit by debris launched decades ago that you are by a satellite in one of these [new] constellations.”

The organization’s global network of ground infrastructure, including ground-based phased array radar systems in Alaska, Texas, New Zealand, and Costa Rica, generates data feeds and real-time alerts that inform decision-making, such as whether to move a satellite in another direction to avoid collision. It’s not unlike clinical-decision support technologies used by hospital physicians to assess the risks of performing a complex medical procedure.

“We’re talking about predicting a close approach,” says Ceperley. “We’re talking about tens of feet of difference, like ‘You’re going to pass 50 feet apart after you’ve completed 100 more laps around the earth.’ We have to be able to predict days into the future to provide an effective service.”

Boosting the Life of Legacy Investments

While protecting satellites in LEO is foundational to the notion of space sustainability, so is ensuring existing legacy investments are as healthy as possible.

That’s why in June 2020, Astroscale acquired Effective Space solutions, an Israeli company focused on the servicing, repairing, and life extension of GEO satellites. The financial benefits of servicing are clear: Launching satellites costs money, and through satellite launch extension services, an operator can remain flexible as it rolls out new market offerings and can hold onto its spectrum longer.

“This underpins everything we’re doing,” says Blackerby. “We’re able to move from a throwaway culture of single-use space assets that regularly increases risk and decreases ROI in orbit to a servicing culture that benefits all space actors and the overall orbital environment. The space sector must grow on a foundation of sustainable orbital infrastructure and on-orbit servicing is at the center of that infrastructure.”

Clearing up the Mess

The business of clearing junk — while not as sexy as other missions — is even more essential than it was eight years ago, when Astroscale launched. Space junk is a growing threat, as evidenced by incidents such as the recent debris-induced damage of the International Space Station’s robotic arm.

As such, the market for space debris monitoring and removal market is projected to grow by $610 million between 2020 and 2024, according to a report by Technavio.

“It’s still a low-probability event that we’ll have an accident today or tomorrow or next week, but the impact of an event that does happen will become significant,” says Blackerby.

According to the European Space Agency (ESA), which tracks debris objects through its Space Surveillance and Tracking networks, more than 22,000 objects are currently floating around space as of January 2019, but the number could double. Events such as Russia’s surprise Anti-Satellite (ASAT) weapon test this month, which resulted in an explosion of debris, have amplified the problem.

Nevertheless, Blackerby seems encouraged by some of the milestones his organization and others have achieved. For example: In August, the company completed a demonstration of its ELSA-d (End-of-Life Services by Astroscale-demonstration) using a magnetic capture system to quickly capture a client spacecraft after releasing it.

During the release-and-capture period, Astroscale’s Mission Operations and Ground Segment teams checked out and calibrated the rendezvous sensors and verified relevant ground system infrastructure and operational procedures. In the coming months, the organization is preparing for a more complex “capture without tumbling” demonstration, in which the client will be separated to a greater distance.

Meanwhile, Swiss start-up ClearSpace, a private company formed in 2018, recently signed a debris removal contract with the European Space Agency to help capture and deorbit a 100-kilogram piece of an Arianespace Vega rocket left in orbit in 2013. The ClearSpace 1.0 mission, scheduled for 2025, will attempt to use a spacecraft equipped with four robotic arms to capture the debris, and drag it into Earth’s atmosphere.

“Our first mission will remove a piece of debris which was not designed for capture, is uncontrolled, and tumbling,” says Tim Maclay, ClearSpace CTO. “These characteristics present a number of unique challenges that require the development of particularly robust solutions for rendezvous, proximity operations, and robotic capture. These elements will then form a solid foundation for addressing a wide variety of services in the future — such as inspection, disposal, mission extension, and repair — for both government and commercial customers.”

Rules of the Road

Given the uptick in space traffic, coupled with sustainability and debris removal missions, questions as to who has the responsibility to manage space traffic loom larger. But while progress with innovation and rulemaking is slower than some might desire, it is still being made.

As Politico reported in May, the American Institute of Aeronautics and Astronautics, the world’s largest aerospace technical society, is stepping up its efforts to ensure the commercial air traffic system is coordinated with expanding space traffic. The organization reportedly established a committee to consider the integration between space traffic management and air management, and to establish (at least in the U.S.), who is responsible for overseeing space debris/space traffic management.

And in June 2021, the European Space Agency announced plans to roll out a space sustainability rating system, which will score space operators on the sustainability of their missions, to increase transparency and recognize responsible behavior.

Meanwhile, the Space Data Association (SDA) is working alongside space situational awareness software company Comspoc to provide governments in the U.S. and Europe with the understanding and tools they need to develop their own space traffic management capabilities, which will ultimately improve space safety for all operators.

“We are continually looking at ways to improve our systems and processes, as well as driving change within the industry as a whole,” says Pascal Wauthier, SDA chairman and executive director.

The SDA also worked with Comspoc to conduct a study to demonstrate the importance of fusing different measurements data and satellite information to improve the accuracy of alerts and collision warnings.

“As the use of space increases, so does the complexity of aggregating the data available,” says Wauthier. “The existing data-sharing solutions certainly reduce the risks associated with in-orbit collisions. However, with the number of satellites increasing, there is a distinct need for development. Beyond advances in systems, we also must review what data we are collecting to support effective data fusion. Could we share information regarding maneuverability? Do we know a satellite’s future movements? Data sharing the relevant information is critical.”

“We also feel that governments have a responsibility for space traffic management,” he continues. “The use of space and satcom is critical to many aspects in day-to-day life, and there must be a coordinated approach to its management. Input from governments would ensure that all space users are adhering to standards to prevent in-orbit events which could have a detrimental effect on all space users.”